数学系
当前位置: 首页 >> 师资队伍 >> 师资简介 >> 数学系 >> 正文
钱文华

职称:副教授

系部:数学系

办公室:X315

办公电话:

邮箱:20170057@cqnu.edu.cn

研究方向

算子代数与算子理论

主讲课程

高等代数

代表论著

1. Wenhua Qian,  Liguang Wang, Wenming Wu and Wei Yuan, Wigner-type Theorem on  transition probability preserving maps in semifinite factors,  Journal of Functional Analysis,  276(2019),1773-1787

2. Don Hadwin, Wenhua Qian* and Junhao Shen, Similarity degree of type II_1 von Neumann algebras with  Property Gamma,, Journal of Operator Theory, 79, 2(2018), 269-285

3. Wenhua Qian, Junhao Shen, Weijuan Shi, Wenming Wu and Wei Yuan, Surjective L^p isometries on Grassmann spaces, Science China Mathematics, 66, 9(2023), 2105-2118

4. Wenhua Qian and Junhao Shen, Similarity degree of a class of C*-algebras, Integral Equations and Operator Theory, 84(2016),121-149

5. Wenhua Qian, Zhang Xiang, Wenming Wu and Xin Yi, Surjective L^p isometries on rank one idempotents, Journal of Mathematical Analysis and Applications, 518(2023), 126669

6. Qihui Li, Ze Li, Wenhua Qian and Liguang Wang, Berger-Shaw theorem of self-commutators in semifinite von  Neumann algebras, , Journal of  Mathematical Analysis and Applications, 479(2019), 718-732

7. Jun He, Guangyu An, Jiankui Li and Wenhua  Qian*, Characterizations of centralizable mappings on algebras of  locally measurable Operators, Acta Mathematica Sinina, English Series, 36,9(2020),1039-1048

8. Wenhua Qian and Don Hadwin, Universal C*-algebras defined by completely bounded unital homomorphisms, Acta Mathematica Sinina, English Series, 31,  12(2015), 1825-1844

9. Wenhua Qian and Junhao Shen, Hochschild cohomology of type II_1 von Neumann algebras with  Property Gamma,Operators and Matrices, 9,  3(2015),507-543

10. Jun He, Jiankui Li and Wenhua Qian, Characterizations of centralizers and derivations on some algebras, Journal of Korean Mathematical Society,  54,2(2017), 685-696

11. Wenbo Huang, Jiankui Li and Wenhua  Qian, Derivations and 2-local derivations on matrix algebras and  algebras of locally measurable operators,Bulletin of the Malaysian Mathematical Sciences Society, 43,1(2020),  227-240

12. 吴文明,蒋叶聪,阮颖彬,钱文华*,投影算子组的联合谱,中国科学:数学,51,  5(2021), 711-722

13. 佐凯悦,钱文华*,正交酉元列在有限von Neumann代数的迹自由积中的应用, ,数学学报,61,(6)2018, 1021-1028

14. 钱文华,沈隽皓,具有性质Gamma的有限von Neumann代数的交叉积,数学学报,65,2(2022),301-308

主持项目

1.国家自然科学基金青年项目,11801050,具有性质Gamma的II_1型von Neumann代数,2019.01-2021.12,23万元,结题,主持

2.国家自然科学基金面上基金,11871127,算子代数交叉积中的若干问题,2019.01-2022.12,53万元,结题,参与

3.国家自然科学基金面上项目,11671133, MF-代数及相关的算子代数问题,2017.1—2020.12,48万元,结题,参与

4.国家自然科学基金青年项目,11201146, C*-代数的拓扑自由熵维数及其融合自由积,2013.1—2015.12,22万元,结题,参与

5.重庆市博士后来渝资助,15万元,结题,主持

6.重庆市科委自然科学基金,cstc2020jcyj-msxmX0723,II_1型因子上关于p-范数的Wigner定理2020.9-2023.8,     5万元,结题,主持

7.重庆市教委自然科学基金,KJQN2018000538,具有性质Gamma的II_1型von Neumann代数及其交叉积,2019.01-2021.12,5万元,结题,主持

8.重庆市教委自然科学基金,KJQN2021000529,核C*-代数上同态的弱渐近对角化,2022.01-2024.12,4万元,在研,主持